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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
graphs are used to find a solution, you should sketch these as part of your answer.  Where an answer 
is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  10]

	 Consider the following weighted graph  G .
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	 (a)	 State what feature of  G  ensures that

		  (i)	 G  has an Eulerian trail;

		  (ii)	 G  does not have an Eulerian circuit. [2]

	 (b)	 Write down an Eulerian trail in  G . [2]

	 (c)	 (i)	 State the Chinese postman problem.

		  (ii)	 Starting and finishing at  B , find a solution to the Chinese postman problem 
for  G .

		  (iii)	 Calculate the total weight of the solution. [6]

2.	 [Maximum mark:  8]

	 (a)	 State Fermat’s little theorem. [2]

	 (b)	 Consider the linear congruence  ax ≡ b(mod p)  where  a , b , p , x ∈ + ,  p  is prime and  
a  is not a multiple of  p .

		  (i)	 Use Fermat’s little theorem to show that  x ≡ a p-2b(mod p) .

		  (ii)	 Hence solve the linear congruence  5x ≡ 7(mod 13) . [6]
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3.	 [Maximum mark:  11]

	 Consider the complete bipartite graph  κ3, 3 .

	 (a)	 (i)	 Draw  κ3, 3 .

		  (ii)	 Show that  κ3, 3  has a Hamiltonian cycle.

		  (iii)	 Draw  κ3, 2  and explain why it does not have a Hamiltonian cycle. [4]

	 (b)	 (i)	 In the context of graph theory, state the handshaking lemma.

		  (ii)	 Hence show that a graph  G  with degree sequence 2, 3, 3, 4, 4, 5 cannot exist. [3]

	 Let  T  be a tree with  v  vertices where  v ≥ 2 .

	 (c)	 Use the handshaking lemma to prove that  T  has at least two vertices of degree one. [4]

4.	 [Maximum mark:  6]

	 (a)	 Show that  gcd(4k + 2 , 3k + 1) = gcd(k - 1 , 2) , where  k ∈ + , k > 1 . [4]

	 (b)	 State the value of  gcd(4k + 2 , 3k + 1)  for

		  (i)	 odd positive integers  k  ;

		  (ii)	 even positive integers  k . [2]

5.	 [Maximum mark:  15]

	 The Fibonacci sequence can be described by the recurrence relation  fn+2 =  fn+1 +  fn  where  
f0 = 0 ,  f1 = 1 .

	 (a)	 Write down the auxiliary equation and use it to find an expression for  fn  in terms of  n . [7]

	 It is known that  α2 = α + 1  where α =
+1 5

2
.

	 (b)	 For integers  n ≥ 3 , use strong induction on the recurrence relation  fn+2 =  fn+1 +  fn  to 
prove that  fn > αn-2 . [8]

– 3 – M18/5/MATHL/HP3/ENG/TZ0/DM


